
7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 1/9

SEPTEMBER 28TH , 2021 | 4 MINUTE READ

Measure, measure, measure

A journey about how to measure build times for Android

How long does it take to implement new features? This is an important metric when

it comes to improving the effectiveness of software engineers and will give the

company an advantage over its competitors. There are many dimensions to consider,

such as API boundaries, CI times, IDE responsiveness, deployment speed, and build

times, among others. One has to measure all of these aspects in order to improve

this metric as a whole, with the realization that some of them are easier to capture

while others require more thought.

Measuring build times can be more challenging than one would assume. In real world

usage, we rely on Gradle build scans on Android. However, these numbers don’t help

identify regressions and improvements in tooling upgrades, and reported developer

build times always lag behind after making a change. They only show a trend over

time and significant changes are hard to detect until all developers pick them up.

Degraded network speeds, other applications running on developer machines,

thermal throttling, and many other reasons skew the reported build times.

Measure build times

The Corner

>

https://scans.gradle.com/
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 2/9

Instead of relying on build scans alone, we decided to create build time benchmarks

for our Android applications to measure whether we make progress into the right

direction. These benchmarks are optimized for reproducible and reliable numbers,

e.g. we run builds in offline mode and use a prefetched artifact cache. They don’t

necessarily represent the developer experience, but they also don’t need to - we

have build scans for that. We use the Gradle Profiler to warm up the Gradle daemon

for 4 rounds and then capture 7 measured runs. The Gradle Profiler allows us to

apply incremental changes to Kotlin and Java files between runs to simulate what a

developer might do locally. A typical scenario looks like this:

incremental_build_abi_change_in_account_module {

 tasks = [":module:app:assembleDebug"]

 apply-abi-change-to = "path/to/file/Java.java"

 apply-abi-change-to = "path/to/file/Kotlin.kt"

 show-build-cache-size = true

 warm-ups = 4

 gradle-args = ["--offline", "--no-build-cache"]

}

Initially, we ran those benchmarks manually once a month to measure different

strategies in our development approach. But this wasn’t good enough for new use

cases, such as catching tooling regressions. Since then we’ve setup a pipeline that

runs the benchmarks daily on an EC2 instance and reports the benchmark results

into our data backend. Our dashboard is updated every day and shows the individual

benchmarks:

Build time benckmarks
The Corner

>

https://github.com/gradle/gradle-profiler
https://aws.amazon.com/ec2/
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 3/9

Since we set up the dashboard there have been improvements but also regressions

that we captured.

Having these consistent build time benchmarks not only helped us for use cases

mentioned above, but also allowed us to easily evaluate the best workstation for our

mobile developers and compare them fairly. We’re running into bottlenecks and

thermal throttling with our MacBook Pros and wanted to test iMacs, Mac Pros, M1

Mac Minis, and EC2 cloud machines.

On May 11th we rolled out the Android Gradle Plugin version 4.2. It fixed a bug in

version 4.1 causing randomly long build times.

On June 18th, we converted our buildSrc directory to an included build, which

caused a build time regression of 30%. Without the dashboard we likely wouldn’t

have noticed, because on paper this seemed to be the better strategy.

On July 20 we fixed the regression caused by the included build.

On July 28 we adopted Gradle 7.1 and made further improvements to our Gradle

plugins.

Developer machine evaluation

The Corner

>

https://issuetracker.google.com/issues/175337498
https://docs.gradle.org/current/userguide/composite_builds.html#included_build_declaring_substitutions
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 4/9

These results surprised us in many ways. Even though the Mac Pro comes with more

cores and more RAM, the iMac with an Intel processor performs better in all of our

scenarios. We tracked this down to the single core speed in a deeper investigation.

The Mac Mini outperformed all other machines by a huge margin in the smaller test

scenarios, but lacked the necessary RAM and number of cores for larger scenarios;

therefore performing worse in them. EC2 instances are a viable alternative, but are

slower than the iMac unless you pay for the expensive “large” instances.

There are a few lessons we learnt along our journey to capture build times.

Measure! Only because something looks better on paper it doesn’t need to perform

as expected in real word scenarios. The best example is the Mac Pro.

Capturing build times is hard. Different use cases require different strategies. Build

scans are awesome, but the data lags behind.

Be careful how you design benchmarks. Try to avoid external factors that could skew

the numbers in a certain direction, such as variable network speeds or cache

download times.

Conclusion

The Corner

>

https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 5/9

Measure frequently and continuously. Sometimes the smallest changes surprise you

in such a large codebase where the same codepath is executed thousands of times.

As new Macs become available we’ll run our benchmark suite and make more

informed decisions about the optimal developer machine. We were very excited

about the performance of the M1 processor of the Mac Mini. However, our

repositories come with a specific set of constraints and it isn’t a good choice for us.

Newer generations of the CPU will hopefully handle the scale of our project better.

Capturing durations for the entire build and the largest targets opens up new

perspectives. Measuring a few or single module build times isn’t enough. We treat

our scenarios like macro-benchmarks.

AUTHORED BY

Ralf Wondratschek

TAGS

Analytics Mobile App Development Mobile Development Android

Android App Development

Discuss on Twitter Join our Slack Channel

The Corner

>

https://developer.squareup.com/blog/archive/tags/analytics/
https://developer.squareup.com/blog/archive/tags/mobile-app-development/
https://developer.squareup.com/blog/archive/tags/mobile-development/
https://developer.squareup.com/blog/archive/tags/android/
https://developer.squareup.com/blog/archive/tags/android-app-development/
https://twitter.com/search?q=developer.squareup.com%2Fblog%2Fmeasure-measure-measure
https://squ.re/slack
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 6/9

Related Articles

Engineering | July 3rd, 2019

Story of an Android Q Leak: attachment crazy town!

Debugging leaks for Square POS in Android Q

The Corner

>

https://developer.squareup.com/blog/story-of-an-android-q-leak-attachment-crazy-town
https://developer.squareup.com/blog/advocating-against-android-fragments
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 7/9

The Corner

>

https://developer.squareup.com/blog/advocating-against-android-fragments
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 8/9

Engineering | October 8th, 2014

Advocating Against Android Fragments

Alternatives for dealing with (painful) Android fragments.

The Corner

>

https://developer.squareup.com/blog/advocating-against-android-fragments
https://developer.squareup.com/blog/advocating-against-android-fragments
https://developer.squareup.com/blog/advocating-against-android-fragments
https://developer.squareup.com/blog/building-a-photo-booth-for-droidcon-nyc
https://developer.squareup.com/blog/

7/23/23, 1:13 PM Measure, measure, measure | Square Corner Blog

https://developer.squareup.com/blog/measure-measure-measure/ 9/9

View More Articles ›

The Corner

About

Archive

Privacy Policy

Opt-Out Of Interest-Based Advertising

Community

Forums

Slack

Twitter

Developer Support

Square Developer

Home

Documentation

Work With Us

© 2023 Square, Inc.

APIs | September 7th, 2018

Building a photo booth for Droidcon NYC

A month ago, my team at Square released the Reader SDK. We had the opportunity t...

The Corner

>

https://developer.squareup.com/blog/archive
https://developer.squareup.com/blog/about
https://developer.squareup.com/blog/archive
https://squareup.com/legal/general/privacy
https://developer.squareup.com/forums
https://squ.re/slack
https://twitter.com/squaredev
https://squareup.com/help/us/en/contact?panel=BF53A9C8EF68
https://connect.squareup.com/
https://developer.squareup.com/docs
https://squareup.com/careers
https://twitter.com/Square
https://www.facebook.com/square
https://instagram.com/square
https://developer.squareup.com/blog/building-a-photo-booth-for-droidcon-nyc
https://developer.squareup.com/blog/building-a-photo-booth-for-droidcon-nyc
https://developer.squareup.com/blog/

