
7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 1/6

AUGUST 13TH , 2019 | 4 MINUTE READ

Chasing Swallowed Exceptions

Handling uncaught errors and crashes in testing

Tests are an essential part of every software project. They give developers

con�dence that any change they make doesn’t break existing functionality. A test is

either successful if the assumptions pass the requirements, or unsuccessful if a

veri�cation fails or the code crashes. To verify code we often rely on assertion

frameworks, which not only compare the actual value with the expected one, but

also print better failure messages when something goes wrong. In case of a crash

we assume that our testing framework catches the exception and marks the test as

failure without tearing down the whole test suite.

For the Java Virtual Machine such a crash written in Kotlin with JUnit could look like

this:

@Test fun `let it crash`() {

 throw IllegalStateException("I did not expect this")

}

7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 2/6

All JUnit does as a test framework is wrap the method call to the test function in a

try-catch block. If an exception was thrown, then the test failed.

Our Point of Sale for Android codebase relies heavily on RxJava 2, a library to

compose asynchronous and event-based programs using observable sequences. The

codebase is growing every day and after a while we noticed suspicious stacktraces

in the error log for several tests. The stacktraces looked like normal crashes as one

would expect using RxJava, but the tests were successful nonetheless.

After looking into concrete scenarios and existing reported issues we realized how

easy it is to reproduce these swallowed exceptions:

@Test fun `successful test`() {

 // Under the hood, fail() just throws an AssertionError()

 Observable.just("item").subscribe { fail("I did not expect this") }

}

This test is successful because of a chain of several operations. First of all, streams

in RxJava 2 �nish either with a complete or failure event. It’s necessary to handle

errors, otherwise they’re forwarded to RxJava’s default error handler. The test above

does not have an error handler, thus the default error handler gets called. Without

any con�guration RxJava 2 by default does not set an error handler and calls the

thread’s uncaught exception handler.

That’s where we enter the default JVM code path. In Java, every thread has an

uncaught exception handler, which receives a callback when the thread is about to

terminate due to an uncaught exception. Additionally, there is a single global handler

for all threads. By default a thread’s uncaught exception handler isn’t set and the

thread lets its thread group handle the exception. The thread group does one last

check, where it looks for the global uncaught exception handler, which isn’t

con�gured either. In this case the thread group only prints the exception in the

console and continues executing the code without any interruption.

https://github.com/ReactiveX/RxJava/issues/5234
https://github.com/openjdk-mirror/jdk7u-jdk/blob/master/src/share/classes/java/lang/ThreadGroup.java#L1050

7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 3/6

That is exactly what we were observing in our test suite. Tests that should have been

failing were successful, but we were seeing logged errors in the console. Because of

RxJava’s error handling routine, the testing framework JUnit couldn’t know that

there was an uncaught exception. In fact, this is not only tied to RxJava 2, it could

happen with any other framework that handles exceptions and decides to call the

uncaught exception handler directly.

In order to �x the issue it was clear to us that we needed our own global uncaught

exception handler, which is called last in the chain of events. There we’d rethrow the

exception and let JUnit handle it. An implementation could be as tiny as this:

internal object RethrowingExceptionHandler : UncaughtExceptionHandler {

 override fun uncaughtException(

 thread: Thread,

 throwable: Throwable

): Nothing = throw UncaughtException(throwable)

}

internal class UncaughtException(cause: Throwable) : Exception(cause)

The last question was how and when do we install the uncaught exception handler?

This has to happen before any test runs. JUnit provides test rules for executing code

before any test or test class starts, but this would require adding this rule to all of

our test classes. Other people suggested having a base class with the rule applied

and all tests to extend this class. But again, then all of our tests would need to be

updated and we’d need to make sure that this is the case moving forward for new

tests. With a codebase this size both solutions aren’t ideal. JUnit has another

mechanism: RunListeners . To our disappointment Gradle, the tool we use to

build our code, doesn’t support this infrastructure.

In the end we decided to go with a Java agent. The Java agent API was introduced

with Java 5 - almost 15 years ago. A Java agent is shipped in a separate .jar �le

and has a premain() function, which gets called before main() as the name

implies. This allows a Java agent to do interesting things like code instrumentation

https://github.com/gradle/gradle/issues/1330

7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 4/6

and manipulating classes at runtime. We didn’t care about any of these features, we

were only interested in using the premain() function as a hook to install an

uncaught exception handler:

internal object Agent {

 @JvmStatic fun premain(

 agentArgs: String?,

 instrumentation: Instrumentation

) {

 Thread.setDefaultUncaughtExceptionHandler(RethrowingExceptionHandler)

 }

}

The integration with Gradle could look like this:

subprojects {

 afterEvaluate { Project subproject ->

 subproject.tasks.withType(Test) {

 doFirst {

 jvmArgs "-javaagent:$javaAgentJar"

 }

 }

 }

}

With this setup the previously swallowed exceptions were rethrown by our uncaught

exception handler and tests started to fail as we’d have hoped from the beginning.

AUTHORED BY

Ralf Wondratschek

7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 5/6

TAGS

Android

Discuss on Twitter Join our Slack Channel

APIs

Engineering

Data Science

View More Articles ›

The Corner

About

Community

Forums

Square Developer

Home

https://developer.squareup.com/blog/archive/tags/android/
https://twitter.com/search?q=developer.squareup.com%2Fblog%2Fchasing-swallowed-exceptions
https://squ.re/slack
https://developer.squareup.com/blog/category/apis
https://developer.squareup.com/blog/category/engineering
https://developer.squareup.com/blog/category/data-science
https://developer.squareup.com/blog/archive
https://developer.squareup.com/blog/about
https://developer.squareup.com/forums
https://connect.squareup.com/

7/23/23, 1:15 PM Chasing Swallowed Exceptions | Square Corner Blog

https://developer.squareup.com/blog/chasing-swallowed-exceptions/ 6/6

Archive

Privacy Policy

Opt-Out Of Interest-Based Advertising

Slack

Twitter

Developer Support

Documentation

Work With Us

© 2023 Square, Inc.

https://developer.squareup.com/blog/archive
https://squareup.com/legal/general/privacy
https://squ.re/slack
https://twitter.com/squaredev
https://squareup.com/help/us/en/contact?panel=BF53A9C8EF68
https://developer.squareup.com/docs
https://squareup.com/careers
https://twitter.com/Square
https://www.facebook.com/square
https://instagram.com/square

